Using image and curve registration for measuring the goodness of fit of spatial and temporal predictions.

نویسندگان

  • Cavan Reilly
  • Phillip Price
  • Andrew Gelman
  • Scott A Sandgathe
چکیده

Conventional measures of model fit for indexed data (e.g., time series or spatial data) summarize errors in y, for instance by integrating (or summing) the squared difference between predicted and measured values over a range of x. We propose an approach which recognizes that errors can occur in the x-direction as well. Instead of just measuring the difference between the predictions and observations at each site (or time), we first "deform" the predictions, stretching or compressing along the x-direction or directions, so as to improve the agreement between the observations and the deformed predictions. Error is then summarized by (a) the amount of deformation in x, and (b) the remaining difference in y between the data and the deformed predictions (i.e., the residual error in y after the deformation). A parameter, lambda, controls the tradeoff between (a) and (b), so that as lambda-->infinity no deformation is allowed, whereas for lambda=0 the deformation minimizes the errors in y. In some applications, the deformation itself is of interest because it characterizes the (temporal or spatial) structure of the errors. The optimal deformation can be computed by solving a system of nonlinear partial differential equations, or, for a unidimensional index, by using a dynamic programming algorithm. We illustrate the procedure with examples from nonlinear time series and fluid dynamics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of Temporal Phenomena of Sediment Rating Curve and comparison of it with the Some Statistical Methods for Estimating Suspended Sediment Load (Case study: Gamasiab Watershed)

The variable and complex nature of the sediment load of rivers has led that the estimation of sediment entering the reservoirs and the production of long term sediment, for determining the lifetime of the structures encounter with the problem. Application of sediment rating curves is one of the most common methods for estimating the suspended sediment load of rivers. Regardless of the accuracy ...

متن کامل

Measuring spatial - temporal of Yazd urban form using spatial metrics

Abstract Urban form can be affected by diverse factors in different times. Socio- economic, political and physical factors are among the main contributors. So, one of the most important challenges of urban planners is measuring and identifying urban development pattern in order to direct and strengthen it to sustainable pattern and right direction. The case study of the present paper is the ...

متن کامل

Analysis of Hierarchical Bayesian Models for Large Space Time Data of the Housing Prices in Tehran

Housing price data is correlated to their location in different neighborhoods and their correlation is type of spatial (location). The price of housing is varius in different months, so they also have a time correlation. Spatio-temporal models are used to analyze this type of the data. An important purpose of reviewing this type of the data is to fit a suitable model for the spatial-temporal an...

متن کامل

Evaluation of Models to Describe Temporal Growth in Local Chickens of Ghana

The logistic, Gompertz, Richards and asymmetric logistic growth curve models were fitted to body weight data of local Ghanaian chickens and French SASSO T44 chickens. All four growth models provided good fit for each sex by genotype growth data with R2 values ranging from 86.7% to 96.7%. The rate constant parameter, k, ranged between 0.137 and 0.271 and were significantly different from zero fo...

متن کامل

Determination of Spatial-Temporal Correlation Structure of Troposphere Ozone Data in Tehran City

Spatial-temporal modeling of air pollutants, ground-level ozone concentrations in particular, has attracted recent attention because by using spatial-temporal modeling, can analyze, interpolate or predict ozone levels at any location. In this paper we consider daily averages of troposphere ozone over Tehran city. For eliminating the trend of data, a dynamic linear model is used, then some featu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biometrics

دوره 60 4  شماره 

صفحات  -

تاریخ انتشار 2004